合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應用性能研究(二)
> 3D打印鈦合金粉體的生產(chǎn)工藝——高速高壓氬氣氣流克服鈦合金熔體表面張力
> C72-MPB氟醚磷酸膽堿表面活性劑表面張力、泡沫/潤濕性能測定(三)
> 如何利用全自動表面張力儀判斷牛奶的純度?是否添加添加劑?
> 全自動表界面張力儀適合標準
> 列舉幾個生活中表面張力現(xiàn)象【表面張力在工業(yè)生活中的應用】
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(二)
> 基于陰離子?非離子型表面活性劑復配最佳強化潤濕高效驅(qū)油體系——摘要
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(二)
> LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
推薦新聞Info
-
> 馬來酸酐為聯(lián)接劑,合成Gemini非離子表面活性劑的表面性能測試
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(三)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(二)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(一)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(四)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(三)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(二)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(一)
> 表面活性劑生物降解度測定方法種類及表面張力法的優(yōu)勢——結(jié)果與分析、結(jié)論
> 表面活性劑生物降解度測定方法種類及表面張力法的優(yōu)勢——摘要、實驗部分
不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
來源:石油與天然氣化工 瀏覽 303 次 發(fā)布時間:2025-05-14
CO2驅(qū)提高采收率由于其明確的機理和控制碳排放的優(yōu)勢在眾多強化采油技術(shù)中脫穎而出。CO2混相驅(qū)油技術(shù)提高了采油率,可使油田的采收率高達90%。此外,還實現(xiàn)了CO2封存,減少了大氣中CO2含量,實現(xiàn)CO2資源利用。我國早在1999年就有對CO2混相驅(qū)先導試驗的研究。
CO2混相是一個動態(tài)的蒸發(fā)氣驅(qū)過程,即CO2通過與原油的多次接觸,蒸發(fā)或萃取原油中的輕烴組分,使前緣注入氣富化后與原油混溶形成混相帶,形成的CO2-原油混相帶驅(qū)替原油從開采井中采出?;煜囹?qū)要求油藏壓力高于或等于CO2與原油完全混相的最低壓力(MMP),Holm and Josendal將MMP定義為當80%以上的油被回收時的CO2突破壓力。最小混相壓力(MMP)是判斷混相是否形成的重要參數(shù)。
在CO2混相驅(qū)油工程發(fā)展迅速的大背景下,本實驗試圖借助先進的ASDA-P技術(shù),用傳統(tǒng)的高壓懸滴法測出不同溫度壓力下CO2和混合烷烴的界面張力,并采用外推法對最小混相壓力(MMP)進行預測。
1實驗
1.1實驗原理
ADSA-P方法將計算得到的理論輪廓和圖像識別出的實際輪廓進行比對得到準確的界面張力值等參數(shù)。其中,實際輪廓由圖像處理軟件自動生成,而理論輪廓的計算基于描述界面張力和液滴自身重力之間達到靜態(tài)力平衡時液滴界面形狀的經(jīng)典Laplace-Young方程。假定液體懸滴此時只受到界面張力和重力的作用。采用懸滴法能夠較為準確地測量混合烷烴與CO2的界面張力。采用式(1)可計算出界面張力的大小。
式中:γ為界面張力,mN/m;Δρ為液相與環(huán)境相的密度差,g/mL;g為當?shù)氐闹亓铀俣?m/s2;de為懸滴外形輪廓上最大直徑,cm;H為修正后的形狀因子。
1.2實驗裝置和材料
本實驗所測量的CO2與混合烷烴的界面張力需模擬實際油藏的地層環(huán)境,即高溫高壓,且有地下鹽水層的存在。為此,設計了如圖1所示的實驗系統(tǒng)以實現(xiàn)這一目標。該系統(tǒng)從實驗原理上主要分為照明系統(tǒng)、圖像采集系統(tǒng)和圖像分析系統(tǒng);從測試材料上主要分為進液系統(tǒng)、進氣系統(tǒng)和進鹽水系統(tǒng);從實驗環(huán)境上主要分為氣體測壓系統(tǒng)、氣體控溫系統(tǒng)和液體控溫系統(tǒng)。實驗用材料來源及純度見表1,烷烴的組分模擬伊朗西南部的阿瓦茲-班吉斯坦(Ahwaz-Bangestan)油田原油的成分,不考慮瀝青質(zhì),摩爾分數(shù)分別為:正庚烷8.93%,正辛烷9.02%,正癸烷5.26%,正十一烷5.72%,正十二烷71.07%。NaCl溶液的質(zhì)量分數(shù)為17.33%。實驗中將CO2與鹽水溶液飽和后,測其與混合烷烴的界面張力。
表1化合物來源和純度
實驗在一定溫度壓力、混合烷烴被NaCl溶液飽和的CO2環(huán)境中進行。實驗溫度分別為40℃和60℃。溫度為40℃時,選擇壓力為3.0~8.5 MPa,壓力每升高0.5 MPa測量1組數(shù)據(jù);溫度為60℃時,選擇壓力為3.0~9.5 MPa,壓力每升高0.5 MPa測量1組數(shù)據(jù)。實驗最終得到有效數(shù)據(jù)共24組。
重力加速度選擇系統(tǒng)默認為9.8100 m/s2。CO2的密度數(shù)據(jù)來源于美國國家標準與技術(shù)研究院(NIST)官網(wǎng)發(fā)布的NIST化學網(wǎng)頁版標準參考數(shù)據(jù)庫,編號為69(NIST Chemistry WebBook,SRD 69);混合烷烴的密度數(shù)據(jù)來源于AP1700的物質(zhì)物性計算查詢平臺,對于烴類混合物的計算,采用較為普遍使用的SUPERTRAPP模型。實驗中不考慮CO2被NaCl溶液飽和后引起的密度變化。實驗以0.02 mL/min的速度進液,同時進行實時錄像,得到同一壓力溫度下,連續(xù)3滴懸滴從形成到完全滴下的錄像,保存至電腦留作后續(xù)處理。